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SOME EFFECTS OF CONTROL PROFILE AND CONTROL TRAILING-EDGE 

ANGm ON THE OSCILIATING HINGE-MOMENT AND FLUTTER 

CHARACTERISTICS OF FLAP-TYPE CONTROLS 

AT TRANSONIC SPEEDS* 

By William C. Moseley, Jr., and Thomas G. Gainer 

SUMMARY 

695 - P 
Free-oscillation tests were made in the Langley high-speed 7- by 

10-foot tunnel to determine some effects of control profile and con- 
trol trailing-edge angle on the dynamic hinge-moment characteristics of 
a trailing-edge, flap-type control. The unswept, untapered semispan- 
wing-control models had aspect ratios of 3 and NACA 65A-series airfoil 
sections. The essentially full-span control was 30 percent of the wing 
chord and was hinged at the 0.765 wing-chord line. 
from 0.60 to 1.02 were made for a range of oscillation reduced frequency 
at an angle of attack of 0'. 

Tests at Mach numbers 

Increasing the wing maximum thickness-to-chord ratio while retaining 
the control trailing-edge angle constant at 13.33' had little effect on 
the variation of aerodynamic damping with amplitude for most test condi- 
tions but did have a stabilizing effect on the unstable damping which 
occurred at the high reduced frequencies at Mach numbers from 0.88 
to O.$. 
stabilizing effect on the unstable aerodynamic damping which was present 
for the control with trailing-edge angle equal to 5.25' in the Mach num- 
ber range from 0.90 to 1.02 (maximum for these tests). 
the "splitter-plate'' control on the 6-percent-thick wing-control model 
was unstable at Mach numbers from about 0.94 to 1.02. Increasing the 
wing thickness to 10 percent had a stabilizing effect on the unstable 
damping in this Mach number range (0.94 to 1.02). Both the serrated and 
full wedge control modifications resulted in slight decreases in the 
magnitude of the unstable damping which occurred for the conventional 
control at Mach numbers from about 0.98 to 1.02. 
thickness-to-chord r a t i o  while holding the control trailing-edge angle 

Increasing the control trailing-edge angle to 19.75' had a 

The damping for 

Changes in maximum wing 
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constant had little effect on the variation of static hinge moment with 
control deflection. 
5.25' to 19.75' resulted in the static hinge moments becoming overbalanced 

Increasing the control trailing-edge angle from 

at low deflections throughout the Mach number range. \ J 

INTRODUCTION 

Dynamic hinge-moment information on flap-type controls at transonic 
speeds are useful in flutter studies and in the design of control servo- 
systems. A program to obtain oscillating hinge-moment data on flap-type 
controls at transonic speeds is being carried out at the Langley high- 
speed 7- by 10-foot tunnel using small low-aspect-ratio wings and a 
reflection plane test technique. 
the effects of control hinge-line position (ref. l), some control profile 
modifications (refs. 2 and 3 ) ,  control wedge angle and control aspect 
ratio or  span (ref. 4), and wing thickness and sweep (ref. 5). Addi- 
tional dynamic hinge-moment information can be found in reference 6 which 
is the report of an investigation made on a low-aspect-ratio, delta-wing- 
control model with a conventional control and a thickened trailing-edge 
control and in reference 7 in which several control-surface configura- 
tions were tested. 

Included in this program have been 

Previous investigations have generally shown the aerodynamic damping 
in the control rotational mode to be unstable at transonic speeds (for 
example, ref. 8), and a single-degree-of-freedom flutter can exist if 
this unstal.le aerodynamic damping exceeds the stable damping from other 
sources in the control system. Usually some form of artificial damping 
must be added to the control system for dynamic stability. Since this 

stabilize the control aerodynamically by some relatively simple geometric 
change, provided overall control efficiency can be maintained. 

@ 
addition generally leads to mechanical complexities, it is desirable to a 

The present investigation was made using the unswept models of 
reference 5 and the same control hinge-line location. Several control 
profiles were investigated including a "serrated wedge" (wherein trian- 
gular wedges both in plan form and profile are superimposed on the con- 
trol surfaces), a full wedge, "splitter-plate" controls, and controls 
having a range of trailing-edge angles. Altogether ten control-profile 
modifications were studied. 

A free-oscillation test technique was used and oscillating hinge 

a range of 

In addition, static hinge 

moments together with associated flutter characteristics were determined 
at an angle of attack of 0' for the following conditions: 
control reduced frequencies, initial oscillation amplitudes up to 12O, 
and a Mach number range from 0.60 to 1.02. 
moments and rolling moments were obtained. 
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SYMBOLS 
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b twice span of semispan model, f t  

C wing chord, f t  

=a cont ro l  chord (dis tance from hinge l i n e  rearward t o  t r a i l i n g  
edge of cont ro l ) ,  f t  

Cb balance chord (dis tance from hinge l i n e  forward t o  leading 
edge of cont ro l ) ,  f t  

Ct t o t a l  cont ro l  chord, cb + ca, f t  

'h 
Hinge moment cont ro l  hinge-moment coef f ic ien t ,  

2M' 9 

subscr ip t  o i nd ica t e s  an 
o s c i l l a t o r y  coe f f i c i en t  

Real p a r t  of % , per radian 
Chs,o = 2M'q 

Imaginary p a r t  o f  Mg , per radian - - 
ch6,co 2M'qk 

c l  
Wing bending moment 

rolling-moment coef f ic ien t  , 
qSb 

f frequency of cont ro l  o sc i l l a t ion ,  cps 

f0  cont ro l  wind-off na tu ra l  frequency, cps 

I moment of i n e r t i a  of control  system, s lug-f t2  

t k con t ro l  reduced frequency, - ux3 

2v 

M e f f e c t i v e  t e s t  Mach number over span of model, S Job'* c s  dy 

M, average chordwise Mach number 

M' area moment of cont ro l  area rearward of and about hinge l i n e ,  
cu f t  d 



aerodynamic hinge moment on control per unit deflection, 
positive when it tends to push the trailing edge down, 
ft -lb/radian 

free-stream dynamic pressure, lb/sq ft 

twice wing area of semispan model, sq ft 

ratio of wing thickness to chord 

splitter-plate thickness, in. 

free-stream velocity, ft/sec 

spanwise distance from plane of symmetry, ft 

control-surface deflection, measured in a plane perpendicular 
to control-surface hinge line, positive when control-surface 
trailing edge is below wing-chord plane, radians except as 
noted otherwise 

L 
5 
7 
9 

amplitude of control oscillation, deg to each side of mean 
control deflection 

logarithmic decrement, d(log10 per second 
d(time) 

control trailing-edge angle included between”sides which form 
trailing edge (positive when trailing-edge thickness is less 

thickness is greater than thickness at hinge line), deg 

.* 
than thickness at hinge line, negative when trailing-edge 

I 

circular frequency of oscillation, 2rrf, radians/sec 

MODEL AND APPARATUS 

The models each consisted of a semispan wing with tip store, a 
trailing-edge flap-type control, and a control-system spring deflector 
mechanism. 
figure 1, and general dimensions of the model with various cross sections 
are given in figure 2. 
of inertia could be varied in order to measwe the dynamic hinge moments 
and flutter characteristics for a range of control reduced frequency. 

A schematic drawing of the test installation is shown in 

The control system was designed so that its moment 
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Wing Details 

The wings were unswept and untapered, with a full-span aspect r a t i o  
of 3.0 and NACA 6% series a i r f o i l  sections.  
invest igated were 0.04, 0.06, 0.08, and 0.10. 

Thickness-chord r a t i o s  

The wings were constructed of so l id  steel. 
a t i p  s to re  attached t o  the  wings, and t i p  s to re s  of d i f f e ren t  weight 
were used t o  vary the  wing na tura l  frequencies. 
and tors ion frequencies of the  wing with t h e  two t i p  s tores  are given i n  
table I. 
clamped as shown i n  figure 1. 

All tests were made w i t h  

The na tura l  f i r s t  bending 

The frequencies were obtained with the  control  system spring 

Control-Surface Detai ls  

The e s sen t i a l ly  full-span controls had a t o t a l  chord c t  equal t o  
30 percent of the wing chord and were hinged a t  the  76.5-percent-wing- 
chord l i n e .  The controls  had a 0 . 2 7 7 ~ ~  blunt overhang balance and the 

gap between the cont ro l  and t h e  wing w a s  unsealed. 

Cross sect ions of the models tes ted i n  t h i s  invest igat ion are shown 
i n  figure 2(b). The wings with t / c  = 0.04, 0.06, and 0.08 were t e s t ed  
with controls  having the  t r a i l i n g  edge beveled t o  an angle of 13.33O ( the  
true-contour trail ing-edge angle of a 65~010 a i r f o i l  sec t ion) .  The wing 
with w a s  t es ted  with a beveled control  having a t r a i l i n g -  
edge angle of 19.75' and a straight-contour control  having a t r a i l i n g -  
edge angle of 5.25'. 
from the nose radius back t o  the  juncture w i t h  t he  trail ing-edge bevel. 
All of these controls  had a s t e e l  spar and a spruce af terport ion.  
order t o  mass balance the  controls,  tungsten i n s e r t s  were d is t r ibu ted  i n  
the  nose overhang. 

t / c  = 0.10 

The beveled controls were of constant thickness 

I n  

The e n t i r e  control surface was wrapped with s i l k .  

The second group of controls had sp l i t t e r -p l a t e  type of modifications 
wherein the rearward 50 percent of the control  chord 
f l a t  p l a t e  ( f ig .  2 (b ) ) .  
t he  wing with 
plate thickness ts of 0.015 in .  and t h e  wing with t / c  = 0.10 was 
tested with controls having ts = 0.013 in.  and ts = 0.031 in.  Each 
cont ro l  was constructed with f i v e  chordwise s t i f f e n e r s  equally spaced 
across  the  span. 
t o  d r i l l  holes rearward of t he  hinge l i n e ,  i n  addi t ion t o  the  tungsten 
i n s e r t s ,  i n  order t o  mass balance them completely. 
f i l l e d  with balsa before the control  w a s  covered with s i lk .  

ca consisted of a 
Three sp l i t t e r -p l a t e  configurations were t e s t ed :  

was tes ted w i t h  a control  having a s p l i t t e r -  t / c  = 0.06 

Since these controls were made of steel it was necessary 

These holes were 
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The wing with t / c  = 0.06 was a lso  equipped with two wedge-type 
controls ,  with t h e  thickness at  the  t r a i l i n g  edge of t h e  wedge sect ion 
being twice t h e  thickness of t h e  control  a t  t he  hinge l i n e  ($ = -7.96'). 
The f i rs t  of  these was a serrated wedge control,  consis t ing of triangular 
wedges o r  te t rahedra superimposed on a conventional p r o f i l e  control  s i m i -  
lar t o  a control previously t e s t ed  i n  reference 7 ( f ig .  2 (b ) ) .  
angular wedges extended from t h e  point of maximum thickness t o  the  t r a i l i n g  
edge, and t h e  included angle between t h e  adjacent wedges was about 28'. 
The second w a s  a conventional o r  full wedge control; t h a t  i s ,  t h e  wedge 
sect ion extended along the  complete span of t h e  control.  Both of these 
controls  had a s t e e l  spar and a spruce a f te rpor t ion  and were mass balanced 
about the  control  hinge l i n e  by t h e  tungsten in se r t s .  

The tri- 

A tang on the inboard end of the control  extended through the  r e f l ec -  
The tang extension con- 

The cont ro l  w a s  mounted by two b a l l  
t i o n  plane t o  the  outs ide of t he  tunnel ( f ig .  1). 
s i s t e d  of a rod and a tors ion  spring. 
bearings on the rod extension outside the  tunnel and a p la in  bearing a t  
t h e  wing t i p .  

' f r i c t i o n  t o  a minimum. Attached t o  the rod was a def lec tor  a r m  used t o  
apply a step def lect ion t o  the  control  system. 
the control  sys tem was varied by changing the moments of i n e r t i a  of t he  
control  system by clamping weights of d i f f e ren t  s i z e  and i n e r t i a  t o  the  
rod. 
are given i n  table 11. 

Control-system alinement was carefu l ly  checked t o  keep 

The na tura l  frequency of 

The mments of i n e r t i a  of t he  cont ro l  system f o r  t h e  controls  t e s t e d  

INSTRUMENTATION 

Elec t r ic  s t r a i n  gages were located near the root  of t h e  wing t o  ind i -  
ca t e  t he  wing bending and tors ion  responses. A static ca l ibra t ion  w a s  
m a d e  of the wing-bending gage i n  order t o  measure wing bending moments 
and obtain am indicat ion of control  effectiveness.  Control pos i t ion  w a s  
measured by the  reluctance-type pickup located near t he  inboard end of t h e  
control .  Outputs of t he  s t r a i n  gages and of t h e  pos i t ion  
indicator  were recorded against  t i m e  by a recording oscil lograph. Dynamic 
ca l ibra t ion  of t h e  recording system indicated accurate response t o  a fre- 
quency of about 300 cycles per  second. 

(See f ig .  1.) 

TESTS 

The t e s t s  were made i n  the Langley high-speed 7- by 10-foot tunnel  
u t i l i z i n g  the  sidewall re f lec t ion-p la te  t es t  technique. This technique 
involves the mounting of a r e l a t ive ly  small model on a r e f l ec t ion  p l a t e  
spaced out from the  tunnel w a l l  t o  bypass t h e  tunnel boundary layer .  Local 
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ve loc i t i e s  over t he  surface p l a t e  allow t e s t i n g  t o  a Mach number of about 
1.02 without choking the  tunnel. 

The va r i a t ion  of Reynolds number based on t h e  wing mean aerodynamic 
chord with t es t  Mach number i s  presented i n  f igure  3 .  
cross-hatched area represents,  f o r  these tests at  a given Mach number, 
t he  m a x i m u m  var ia t ion  of Reynolds number with atmospheric conditions. 

The width of t h e  

Osc i l la t ing  hinge moments were obtained f o r  amplitudes up t o  about 
12O through a Mach number range o f  0.60 t o  1.02 a t  an angle of a t tack  of 
0'. The control-reduced-frequency range var ied with Mach number and w a s  
generally i n  the range from 0.04 t o  0.16. 
moment and rolling-moment data  were obtained at  

In  addition, s t a t i c  hinge- 
a = 0'. 

These tests were made t rans i t ion  f ree ,  t h a t  is, with no roughness 
added t o  the  wing surface, t o  insure boundary-layer t r a n s i t i o n  from 
laminar t o  turbulent-flow conditions. 
ca t e  t h a t  no major t rend e f f ec t s  would be expected because of f ix ing  
t r a n s i t i o n  f o r  these tests. 

The r e s u l t s  of reference 5 indi-  

TEST TECHNIQUE AND REDUCTION OF DATA 

The cont ro l  system w a s  designed so that  a t  the tes t  frequencies the 

The wing response character-  
t o r s iona l  response of t he  control  about t he  hinge l i n e  was e s sen t i a l ly  
t h a t  o f  a single-degree-of-freedom system. 
i s t i c s  were var ied r e l a t i v e  t o  the control o s c i l l a t i o n  frequency by t h e  
choice of t i p - s to re  weight so t h a t  t h e  physical  response of t h e  model for 
t h e  various t es t  conditions w a s  predominantly control  ro ta t ion .  There- 
fore ,  t h e  aerodynamic moment resul t ing from angular def lec t ion  of the  
cont ro l  about t h e  hinge l i n e  could be determined from the  f r ee -osc i l l a t ion  
cha rac t e r i s t i c s  of the  control  system subsequent t o  known s t a r t i n g  condi- 
t ions .  
t e s t ed  by the free o s c i l l a t i o n  tes t  technique used are sham i n  figure 4. 
For a l l  models t e s t e d  i n  this  investigation, the wing motions were small 
r e l a t i v e  t o  the  cont ro l  motions and the mean def lec t ion  during o s c i l l a -  
t i o n  was near 0' i n  a l l  cases. 

Typical oscil lograph records of 6he t i m e  response of a model 

The tes t  technique used t o  ini t ia te  t h e  free o s c i l l a t i o n s  depended 
on the t o t a l  (aerodynamic plus  nonaerodynamic) damping of the  control  
system f o r  t he  pa r t i cu la r  t e s t  condition. When the t o t a l  damping was 
unstable  a t  low deflect ions,  t he  h inge  moments were determined from the 
unstable o s c i l l a t i o n  following release of t he  cont ro l  a t  6 % 0' 
( f ig .  & ( e ) ) .  This type of osc i l la t ion  was i n i t i a t e d  by random tunnel 
disturbances and i n  all cases was self-l imiting. When the  t o t a l  damping 
w a s  stable o r  var ied from s tab le  t o  unstable within the t e s t  o s c i l l a t i o n  
amplitude range, the f r ee  osc i l la t ion  was  i n i t i a t e d  by releasing t h e  
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cont ro l  at some def lec t ion  angle ( f ig .  4 ( b ) )  with t h e  ensuing o s c i l l a t i o n  
being e i ther  a buildup o r  a decay. 

- 
J 

Evaluation of Spring Moments 

The aerodynamic inphase o r  spring moment was determined from t h e  
na tu ra l  frequency of o s c i l l a t i o n  of the control  system. Since the  var ia-  
t i o n  of inphase moment with amplitude i s  not necessar i ly  l i n e a r  and t h e  
t e s t  method was not  su f f i c i en t ly  accurate t o  determine t h e  va r i a t ion  i n  
na tu ra l  frequency with amplitude, t he  values of ch presented are 

e f f ec t ive  values averaged over the amplitude range of t h e  osc i l l a t ion .  
I n  t h i s  investigation, the e f f e c t  of t h e  values of damping on t h e  na tu ra l  
frequency w a s  considered negl igible ,  and the  aerodynamic spring-moment 
der ivat ive w a s  determined from t h e  re la t ionship  

E , ( J J  

L 
5 
7 
9 

where the  subscript  o s i g n i f i e s  a wind-off condition. A negative value 
of Chb,, opposes t he  cont ro l  displacement and a c t s  as an aerodynamic 
spring which increases the  stiffness o r  na tura l  frequency of t h e  cont ro l  
system. 

4 
Evaluation of Damping Moments 

The aerodynamic out-of-phase o r  damping moment was determbed from 

tem. The damping moment i s  not necessar i ly  l i n e a r  with amplitude; how- 
ever,  t h e  damping results were analyzed on t h e  basis of an equivalent 
l i n e a r  system. 
described by an equivalent viscous damping and t h a t  t h e  t i m e  response 
of the  ac tua l  system was simulated by a l i n e a r  system having t h e  appro- 
p r i a t e  damping constant a t  each o s c i l l a t i o n  amplitude f o r  a given fre- 
quency. The var ia t ion  of  damping-moment der iva t ive  with o s c i l l a t i o n  
amplitude w a s  obtained by p l o t t i n g  the logarithm of t h e  amplitude of 
successive cycles  of the o s c i l l a t i o n  aga ins t  t i m e  and taking the slope 
a t  any given amplitude of t h e  f a i r e d  curves as t h e  value of t h e  loga r i th -  

7 

t h e  ra te  o f  buildup o r  decay of t h e  free o s c i l l a t i o n  of the cont ro l  sys- m 

It was assumed t h a t  t h e  damping forces  were adequately 

d m310 6 
mic decrement h = of the  osc i l l a t ion .  The aerodynamic 

damping derivative was determined from the  r e l a t ionsh ip  
d ( t i m e  ) 

h 

i 
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where the  subscript  o refers t o  wind-off values taken a t  approximately 
t h e  same frequency and amplitude as the wind-on values. 

Tare o r  wind-off damping values were determined before and after 
each test and average values were used i n  reducing the tes t  data.  
care  w a s  taken t o  check the  alinement of t he  control  system, some d i f f i -  
c u l t i e s  were encountered i n  keeping the tare  o r  f r i c t i o n  damping constant 
i n  t h e  bearing system that was made necessary by the  r e l a t i v e l y  l a rge  
amplitudes studied i n  these tests. A s  a result, some sca t t e r  or  e r r a t i c  
var ia t ions  of  Ch' 

Expressed i n  terms of the aerodynamic damping coef f ic ien t  Ch6,,, f o r  a 
representat ive Mach number of 1.00, essen t i a l ly  all tare  damping values 
f o r  t h e  models t e s t ed  were i n  t h e  range from about -2 t o  about -5 f o r  
t he  minimum i n e r t i a  condition ( the  condition giving t h e  highest  values 
of control  reduced frequency) and f rom about -5 t o  about -11 for  t h e  
m a x i m u m  i n e r t i a  condition ( the  condition giving the lowest values of con- 
t r o l  reduced frequency). Even so, the  da ta  a r e  ind ica t ive  of the  general  
trends w i t h  amplitude and Mach number which a re  considered the  most impor- 
tant results of t h e  tests.  

Although 

can be expected f o r  t h i s  type of tes t  technique. 
6,w 

Determination of S t a t i c  Moments 

S t a t i c  hinge moments were measured by r e s t r a in ing  t h e  control  system 
i n  tors ion  with a ca l ibra ted  e l e c t r i c  strain-gage beam which measured t h e  
torque o r  moment about t he  control  hinge l i n e  f o r  various control deflec- 
t ions .  The s t a t i c  hinge-moment coeff ic ient  ch w a s  determined from t h e  
re la t ionship  

Hinge moment ch = 
2M' 9 

Wing bending moments were measured f o r  various cont ro l  def lec t ions  
with a ca l ibra ted  e l e c t r i c  s t r a i n  gage located a t  the  w i n g  root .  Wing 
rolling-moment coef f ic ien ts  were then approximated by the re la t ionship  

Wing bending moment 
c1 = 

qSb 

CORRECTIONS 

No corrections have been applied t o  t h e  da ta  f o r  t h e  chordwise and 
spanwise veloci ty  gradients  o r  t he  e f f ec t s  of t h e  tunnel w a l l s .  
shown i n  reference 9 t h a t  a tunnel resonance phenomenon can appreciably 

It i s  
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decrease the magnitude of forces and moments measured i n  osc i l l a t ion  
tests.  
e f f e c t  on the  results of t h e  present invest igat ion.  In general, most of 
t h e  test  frequencies were.wel1 removed from t h e  calculated resonant fre- 
quencies, and there  w a s  no apparent decrease i n  moments for  t he  t es t  
frequencies tha t  were close t o  resonant frequencies. 
t h e  magnitude of the resonant e f f e c t s  would be rel ieved by the  model t i p  
e f f e c t s  and the nonuniformity of t he  veloci ty  f i e l d  i n  t h e  t es t  section. 

3 

However, it i s  believed that th i s  phenomenon had no appreciable 

i 

It i s  possible  that  

Control-deflection correct ions determined from s t a t i c  ca l ibra t ions  
have been applied t o  the output of t h e  pos i t ion  pickup t o  give the  deflec- 
t i o n  at the midspan of t he  cont ro l  surface f o r  t h e  s t a t i c  data.  
rec t ions  were applied t o  the  o s c i l l a t i n g  data t o  account f o r  the t w i s t  
of the control system outboard of  t he  pos i t ion  pickup since,  f o r  t h e  
physical  constants and frequencies involved, t h i s  was generally 
negligible.  

No cor- 

RESULTS AND DISCUSSION 

D a m p i n g  kments  and F lu t t e r  Character is t ics  

The var ia t ion  of aerodynamic damping coef f ic ien t  with 

osc i l l a t ion  amplitude f o r  various Mach number and reduced frequencies 
together  with the  associated f l u t t e r  cha rac t e r i s t i c s  are presented i n  
figure 5 f o r  t h e  # = 13.33O control  models. 
from figure 3 and shows t h e  var ia t ion  of 

representat ive amplitudes of approximately 10 and 8O and reduced fre- 

r e s u l t s  are shown fo r  the models with # = 5.25' control  and 9 = 19.75O 
cont ro l  in  f igures  7 and 8, f o r  t he  three  sp l i t t e r -p la te -cont ro l  models 
i n  f igures  9 and 10, and f o r  t he  full-wedge and serrated-wedge-control 
models i n  f igures  11 and 12.  For purposes of comparison, data  from re fe r -  

with Mach number f o r  conventional ence 5 showing the var ia t ion  of 

p r o f i l e  control models having thickness-to-chord r a t i o s  of 0.06 ( f i g .  12) 
and 0.10 ( f i g s .  6 and 8) a r e  a l so  presented. 

Figure 6 was cross  p lo t ted  
with Mach number a t  7 

ch6,u 

quencies of approximately 0.08 and 0.04. Similarly, aerodynamic Clamping * 

ch6 ,u 
, 

For these tests it w a s  not feasible t o  maintain a constant value 
of reduced frequency; therefore ,  values of reduced frequency k are 
t abu la t ed  on the p l o t s  of 

and 11). 
d i t i o n s  where f l u t t e r  occurred. 

Che against  amplitude ( f igs .  5, 7, 9, 
6,u 

Also given are f l u t t e r  amplitudes and frequencies f o r  a l l  con- 

t m 
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Models with $$ = 13.33' control.- I n  general, the  aerodynamic damping 
with r e s u l t s  for  t he  various models show a nonlinear var ia t ion  of 

o sc i l l a t ion  amplitude, pa r t i cu la r ly  a t  Mach numbers above 
dynamic r e s u l t s  fo r  the  models with $ = 13.33O control  ( f i g .  5 )  ind ica te  
t ha t  for each of t h e  models the  damping w a s  stable f o r  a l l  amplitudes and 
reduced frequencies investigated a t  Mach numbers from 0.60 t o  about 0.85 
and w a s  e i t he r  stable o r  s l i gh t ly  unstable i n  the  Mach number range from 
about 0.98 t o  1.02, t he  m a x i m  Mach number tes ted .  
range from about 0.88 t o  about 0.96, t h e  damping was generally s t ab le  a t  
the  lower reduced frequencies, but became unstable f o r  t he  models with 
t / c  = 0.04 and 0.06 a t  the  high reduced frequencies (corresponding t o  

tended t o  increase fo  = 288.0 and fo  = 325.0). In general, 

with increasing amplitude i n  t h e  low amplitude range (below about 3') 
and w a s  f a i r l y  constant a t  a r e l a t ive ly  low l e v e l  of stable damping 
through the  remaining amplitude range. 
t i ons  which exis ted a t  the  intermediate Mach numbers, however, values of 

values of  Ch' occurring a t  t he  l o w  o s c i l l a t i o n  amplitudes, thus leading 

t o  the  l imited amplitude type of f l u t t e r  response obtained. 
p l o t s  of figure 6 further i l l u s t r a t e  these points .  Also included i n  f i g -  
ure 6 are cross  p l o t s  of the  data  for t he  conventional controls  of refer- 
ence 5. 
trail ing-edge angle on the  unstable damping which occurred f o r  the con- 
vent ional  controls  at  transonic Mach numbers, and indicate  t h a t  cont ro l  
t ra i l ing-edge angle i s  an important parameter t o  be considered when 
evaluating results previously reported showing t h e  e f f ec t s  of wing thick-  
ness on control  aerodynamic damping. 

ch' 
M = 0.80. 

6,a 
Aero- 

In t h e  Mach number 

ChS,LU 

For t h e  unstable damping condi- 

tended t o  decrease with increasing amplitude with maximum unstable 
ch;,a 

6,a 
The cross  

These da ta  are included t o  show t h e  s t ab i l i z ing  e f f e c t  of cont ro l  

When comparing the f l u t t e r  charac te r i s t ics  with the  aerodynamic 
damping values ( f ig .  5) ,  it should be remembered t h a t  the control  system 
had a ce r t a in  l e v e l  o f  nonaerodynamic damping. F lu t t e r  involved the 
degree of freedom of control  ro ta t ion  about the hinge l i n e  and f o r  these 
models generally had t o  be i n i t i a t e d  by def lec t ing  the  control  t o  an 
i n i t i a l  amplitude (usually about 12O) and then releasing it. 
then a decay i n  t h e  resu l t ing  osc i l l a t ion  u n t i l  a steady-state condition 
was reached, wherein the  aerodynamic damping fed in to  the  control  o s c i l l a -  
t i o n  over a complete cycle was equal t o  t h e  energy diss ipated by the  non- 
aerodynamic damping of the control  system. The f l u t t e r  frequencies given 
are f o r  t h e  steady-state o sc i l l a to ry  conditions f o r  these models. 

There w a s  

Increasing the  thickness-to-chord r a t i o  while holding t h e  t r a i l i n g -  
ch' edge angle constant a t  13.33' had l i t t l e  e f f e c t  on the  var ia t ion  of 

with amplitude fo r  most tes t  conditions, but d id  have a s t ab i l i z ing  e f fec t  
on the  unstable damping which occurred i n  t h e  intermediate Mach number 
range a t  the  high reduced frequencies. 

6,a 

For example, the  t / c  = 0.04 model 



a t  
f o r  t h e  t / c  = 0.06 model and increasing the  thickness-to-chord r a t i o  t o  
0.08 completely eliminated unstable damping i n  t h e  intermediate Mach num- 
ber range. 

M = 0.88, unstable damping occurred but was delayed t o  about M = 0.90 

Wdels with $ = 5.25O and $ = 19.75O controls.-  The data  of figure 7 
indica te  tha t  increasing t h e  control  trail ing-edge angle from 5.25' 
t o  19.75' on t h e  t / c  = 0.10 wing-control combination had a s t ab i l i z ing  

var ia t ion  with o s c i l l a t i o n  amplitude i n  the  Mach e f f e c t  on the  

number range from about 0.90 t o  1.02 while having only a s m a l l  e f f ec t  on 
%,m 

the  damping a t  lower Mach numbers. Values of <. for  both of these 
690 

models were s tab le  and fairly constant through the  range of tes t  ampl i -  
tudes i n  the  low Mach number range (from 0.60 t o  about 0.88). A t  t h e  

~ 

higher Mach numbers, t he  s. var ia t ion  fo r  t h e  model with 

@ = 5.25' control  w a s  of t h e  type which might r e s u l t  i n  l imited amplitude 
f l u t t e r ;  t h a t  i s ,  maximum unstable values of 

o sc i l l a t ion  amplitudes and $ 0  tended t o  decrease with increasing 

6,m 

occurred a t  the  low 
%,a 

690  
amplitude. F lu t t e r  did not occur f o r  t h i s  model, however, s ince the  non- 
aerodynamic damping present i n  t h e  system was greater than t h e  unstable 
aerodynamic damping present.  For t he  model with @ = 19.75O control,  on 
the  other hand, la rge  s t ab le  values of were obtained a t  the  low 

amplitudes such tha t ,  although Ch* tended t o  become less  s t ab le  with 

increasing amplitude, t he  damping remained s t ab le  f o r  most of the  ampl i -  
tude and Mach number range, with only small unstable values of 

8,a 

s. occurring a t  M = 1.02. 6,w 

I n  general, changes i n  reduced frequency resu l ted  i n  only small 
changes in the magnitude of throughout t he  amplitude and Mach 

number ranges investigated.  It should be noted, however, t h a t  a t  Mach 
numbers of  0.92 and 0.94, unstable damping f o r  t h e  model with 
@ = 5.25' control  occurred only a t  t h e  high reduced frequencies (corre- 
sponding t o  fo = 2 6 3 . 0 . ~ ~ ~ ) .  

6,m 

Control trail ing-edge angle e f f e c t s  are a l so  i l l u s t r a t e d  i n  f ig -  
ure 8 which shows a de f in i t e  t rend  toward more s tab le  damping as t h e  
trail ing-edge angle i s  increased a t  transonic Mach numbers. 

Spl i t ter-plate-control  models.- The aerodynamic results f o r  t h e  
sp l i t t e r -p la te -cont ro l  model with t / c  = 0.06 and ts = 0.013 tes ted  
i n  t h i s  invest igat ion ( f ig .  9) show generally s t ab le  damping a t  Mach 
numbers from 0.60 t o  about 0.92, and generally unstable damping a t  
transonic Mach numbers from 0.94 t o  1.02. At a Mach number of 0.92, 

- 
J 

L 
5 
7 
9 

? 

t. 

E 

* 



f 

. 

L 
5 
7 
9 

e. e.. . e e. D. e e.. e e.. 0 .  
0 . .  . e *  0 . .  . e .  e .  0 .  
e . . .  e e .  e e e . .  e . .  e .  . 0 .  e .  

e e e.. e. 13 

unstable damping occurred only at the higher amplitudes, but as the Mach 
number was increased above 0.94, t h e  damping became unstable throughout 
t he  amplitude range for  a l l  reduced frequencies with m a x i m  unstable 
values occurring at  the  lower amplitudes. The limited-amplitude type of  
f l u t t e r  response obtained f o r  this model was i n  a l l  cases se l f - s ta r t ing ;  
t h a t  i s ,  upon re lease  of t he  control t he  osc i l l a t ion  bu i l t  up t o  a steady- 
state condition. 

By increasing t h e  maximum thickness-to-chord r a t i o  o f  the 

Ch' 

ts = 0.013 model t o  0.10, a s tab le  Ch' 
numbers up t o  about 0.98, with 

t e s t  conditions above This trend toward more s t ab le  damping 
with increasing m a x i m u m  thickness-to-chord r a t i o  at transonic Mach num- 
bers i s  c lear ly  i l l u s t r a t e d  by t h e  data  presented i n  figure 10. 
w e  10 a lso  shows t h a t  increasing the s p l i t t e r - p l a t e  thickness from 0.013 
t o  0.031 on the  model w i t h  
damping s l igh t ly  less stable a t  the higher tes t  Mach numbers, and that 

wi th  there  was generally l i t t l e  difference i n  the  var ia t ion  of 

Mach number f o r  the three sp l i t t e r -p l a t e  models a t  Mach numbers below 
about 0.85. 

var ia t ion  w a s  obtained a t  Mach 
690 
becoming s l igh t ly  unstable f o r  some 

6,m 
M = 0.98. 

Fig- 

t / c  = 0.10 generally tended t o  make the 

%,m 

Wedge-control models.- The damping f o r  the full-wedge cont ro l  model 
tested i n  t h i s  invest igat ion ( f i g .  l l ( b ) )  was s tab le  a t  the  low o s c i l l a t i o n  
amplitudes a t  Mach numbers from 0.60 t o  about 0.98 while generally becoming 
unstable a t  t he  higher amplitudes in  the  Mach number range from about 0.85 
t o  about 0.98. 
damping generally existed f o r  t h e  complete range of amplitudes and reduced 
frequencies. 
damping remained s tab le  throughout t he  amplitude range a t  Mach numbers up 
t o  about 0.98. A t  Mach numbers above about 0.98, however, t h e  unstable 
damping var ia t ion  which occurred resulted i n  l imi t ed  amplitude f lu t te r  a t  
the high reduced frequencies. For these models, decreasing t h e  reduced 
frequency a t  the  intermediate Mach numbers (from about 0.90 t o  0.98) had 
a s t ab i l i z ing  e f f ec t  on the  damping but otherwise var ia t ion  within t h e  
reduced-frequency range produced no d e f i n i t e  trends i n  the  damping 
var ia t ion.  

A t  Mach numbers of 1.00 and 1.02, a low l e v e l  of unstable 

For the serrated-wedge-control model ( f ig .  l l ( a )  ) t he  

A comparison of  the  damping f o r  t h e  full- and serrated-wedge cont ro l  
models w i t h  tha t  f o r  t he  basic t / c  = 0.06 wing-control combination (having 
a conventional control)  of reference 5 i s  given by the  cross p l o t s  of f i g -  
ure 12. The full-wedge modification t o  t h e  conventional cont ro l  made t h e  
damping more s tab le  i n  the  subsonic Mach number region (M = 0.60 t o  about 
0.88), and generally l e s s  stable i n  t h e  intermediate Mach number region 
(0.90 t o  0.96). The main e f f ec t  resul t ing from the serrated-wedge modifi- 
cat ion was a highly s tab le  s h i f t  i n  t he  damping var ia t ion  with Mach number 
a t  Mach numbers from about 0.85 t o  about 0.98. Both the  full-wedge and 



serrated-wedge modifications resu l ted  i n  s l i g h t  decreases i n  the  magnitude 
of t he  unstable values of ch. which occurred f o r  t he  conventional con- 

.. 

t r o l  model a t  Mach numbers from about 0.98 t o  1.02. The f l u t t e r  occurring 4 
f o r  t h e  serrated-wedge model a t  the  low amplitudes i n  t h i s  region was 
probably associated with the  marked amplitude e f f e c t  on damping at  f r e -  
quencies above those presented i n  f igure  12. 

Spring Moments 

S t a t i c  hinge-moment or  spring-moment coef f ic ien ts  a r e  p lo t t ed  against  
The cont ro l  def lect ion i n  f igures  13 t o  16 f o r  t he  various models tes ted .  

var ia t ions  o f  the  s t a t i c  and dynamic spring-moment der iva t ive  'h6 and 
with Mach number are shown i n  f igure  17, together with comparative ch6,,, 

r e s u l t s  from reference 5. 

For the models with 6 = 13.33' control,  changes i n  the thickness-to- 
chord r a t i o  from 0.04 t o  0.08 had very l i t t l e  e f f e c t  on the  s t a t i c  hinge- 
moment var ia t ion w i t h  control  def lec t ion  throughout t he  Mach number range 
investigated ( f i g .  13). Values of Ch for  these models were e i t h e r  under- 
balanced o r  c lose t o  balance a t  t he  low def lec t ions  and became more under- 
balanced a t  t he  higher def lect ions.  A t  Mach numbers of 1.00 and 1.02, t he  
var ia t ion  of ch with 6 was nearly l i n e a r  and the  aerodynamic Center 
sh i f t ed  rearward so t h a t  Ch f o r  these models became considerably 
underbalanced . 

In  agreement with previously indicated control  trailing-edge-angle 
e f f e c t s  ( f o r  example, r e f .  l o ) ,  the  $ = 5.25' control  w a s  more under- 
balanced than any of t he  
t / c  = 0.10 wing model of reference 5 (which a l so  had a t r u e  contour 
t ra i l ing-edge angle of 13.33') . 
angle from 5.25O t o  19.75' resu l ted  i n  a decrease i n  the  underbalance of 
t he  control, especial ly  a t  the  lower cont ro l  def lec t ions ,  such t h a t  t he  
19.75' control became overbalanced a t  t h e  lower def lec t ions  throughout 
the  range of t e s t  Mach numbers. 

= l3.33O models including the  basic 

Increasing the  control  t ra i l ing-edge 

For the sp l i t t e r -p la te -cont ro l  model with t / c  = 0.06 and ts = 0.013 
( f i g .  15) the  var ia t ion  of ch with 6 was f a i r l y  l i n e a r  and underbal- 
anced over t he  e n t i r e  range of control  def lec t ions  throughout t he  Mach nun- 
ber range. For the  model with t / c  = 0.10 and ts = 0.013, ch varied 
with 6 i n  a similar manner, but was considerably less underbalanced a t  
the  lower control  def lect ions a t  Mach numbers i n  the  v i c i n i t y  of 
Increasing the  s p l i t t e r - p l a t e  thickness from 0.013 t o  0.031 f o r  t he  
10-percent-wing control  model had no appreciable e f f e c t  on the  s t a t i c  
hinge-moment var ia t ions.  

M = 0.95. 

(Compare f i g s .  l 5 ( b )  and 15(c )  .) 
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The s t a t i c  hinge-moment data  of reference 5 show t h a t  t he  va r i a t ion  
Of  ch with 6 fo r  t he  basic model with t / c  = 0.06 was generally 
l i n e a r  and close t o  balance a t  t he  lower control  def lect ions i n  t h e  Mach 
number range from 0.60 t o  0 . 9 .  
var i a t ion  of ch with 6 remained l i nea r  but became more underbalanced 
as the  loading sh i f t ed  rearward. The serrated-wedge modification t o  t h e  
conventional control  ( f i g .  16) had l i t t l e  e f f e c t  on t h i s  var ia t ion ,  
except a t  a Mach number of 0.95 where the  serrated-wedge cont ro l  became 
overbalanced a t  t he  lower control  deflections.  
t ion ,  on the other hand, resu l ted  i n  a s t a t i c  hinge-moment va r i a t ion  
which w a s  more l i nea r  and considerably more underbalanced than f o r  the  
conventional control  f o r  the complete test range. 

A t  Mach numbers from 0.95 t o  1.02 the  

The full-wedge modifica- 

The spring-moment der ivat ives  measured from s t a t i c  chE and 

data  were generally i n  qua l i t a t ive  agreement f o r  each ch6,0 dynamic 

of the  models t e s t ed  i n  t h i s  invest igat ion ( f ig .  17) .  
of t he  s t a t i c  and dynamic r e s u l t s  to  determine the  e f f e c t s  of o s c i l l a t i n g  
frequency i s  not f eas ib l e  since the der iva t ives  could not be evaluated 
f o r  t h e  same amplitude range. 
der iva t ives  i n  some cases were evaluated f o r  an amplitude range where 
the  s t a t i c  hinge-moment data  became nonlinear with amplitude. 

Direct comparison 

For the t e s t  technique used, t h e  dynamic 

Rolling Moments 

Rolling-moment coef f ic ien ts ,  as determined from the  wing bending 
response t o  an a i r load  under nonoscil latory conditions, are p lo t t ed  a s  
a function of control  def lec t ion  for the various models i n  f igures  18 
t o  21. I n  general, the  var ia t ion  of C z  with 6 was f a i r l y  l i n e a r  
over the  def lec t ion  range presented, with l i t t l e  e f f e c t  on the  va r i a t ion  
being produced by changes i n  t e s t  Mach number. It can be seen by com- 
paring these f igures  t h a t  the  effectiveness of each of t he  controls  i n  
producing r o l l  was e s sen t i a l ly  t h e  same fo r  a l l  models, with the  exception 
of t he  and the  two 10-percent sp l i t t e r -p la te -cont ro l  models 
which produced a higher per degree control  def lec t ion  than any of t h e  
other controls .  Also, f igure  21  shows t h a t  the  serrated-wedge control  
gained an increase i n  effectiveness a t  the  higher def lect ions and t h e  
full-wedge control  increased i n  effectiveness with Mach number. 

@ = 5.25' 
Cz 

CONCLUSIONS 

Results of o s c i l l a t i n g  hinge-moment t e s t s  a t  Mach numbers from 0.60 
t o  1.02 t o  determine some e f f e c t s  of control  p r o f i l e  and control  t r a i l i n g -  
edge angle ind ica te  the following conclusions: 
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1. Increasing the wing m a x i m  thickness-to-chord ratio while 
retaining the control trailing-edge angle constant at 13.33' had 1 ttle 
effect on the variation of 

tions but did have a stabilizing'effect on the unstable damping which 
occurred at the high reduced frequencies at Mach numbers from 0.88 

ch' with amplitude for most test condi- 
6,w 

to 0.96. 

2. Increasing the control trailing-edge angle to 19.75' had a sta- 
bilizing effect on the unstable aerodynamic damping which was present 
for the control with trailing-edge angle equal to 5.25O in the Mach num- 
ber range from 0.90 to 1.02 (maximum for these tests). 

L 

7 
9 

3. The damping for the splitter-plate control on the 6-percent-thick c 
1 

wing-control model was unstable at Mach numbers from about 0.94 to 1.02. 
Increasing the wing thickness to 10 percent had a stabilizing effect on 
the unstable damping in this Mach number range (0.94 to 1.02). 

4. Both the serrated- and full-wedge control modifications resulted 
in slight decreases in the magnitude of the unstable damping which 
occurred for the conventional control at Mach numbers from about 0.98 
to 1.02. 

5. Changes in maximum wing thickness-to-chord ratio while holding 
the control trailing-edge angle constant had little effect on the varia- 
tion of static hinge moment with control deflection. 
trol trailing-edge angle from 5.25' to 19.750 resulted in the static 
hinge moments becoming overbalanced at low deflections throughout the 
Mach number range. 

Increasing the con- 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., August  19, 1959. 
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TABLE I. - NATURAL F'IRST BENDING AND TORSION FREQUENCIES OF WINGS 

~ 

Configuration 

t / c  = 0.04 wing, 
# = 13.33' control  

t / c  = 0.06 wing, 
$ = 13.33' control  

t / c  = 0.08 wing, 
# = 13.33' control  

t / c  = 0.10 wing, 
# = 5.25' control  

t / c  = 0.10 wing, 
$ = 19.75' control  

t / c  = 0.06 wing, 
serrated-wedge control  

t / c  = 0.06 wing, 
full-wedge control  

t / c  = 0.06 wing, 
s p l i t t e r - p l a t e  control  

t / c  = 0.10 wing, 
t h i n  sp l i t t e r -p l a t e  cont ro l  

t / c  = 0.10 wing, 
thick s p l i t t e r - p l a t e  control  

Tip 
s t o r e  

Light 
Heavy 

L i g h t  
Heavy 

Light 
Heavy 

Light 
Heavy 

Light 
Heavy 

Light 
Heavy 

Light 
Heavy 

Light 
Heavy 

Light 
Heavy 

Light 
Heavy 

Bending, 
CP S 

108 
80 

157 
121 

194 
162 

238 
210 

244 
222 

165 
118 

157 
122 

155 
119 

236 
216 

240 
220 

Tor s i  on, 
CP S 

J 
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L 
5 
7 
3 

- 
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TABU 11. - MOMENTS OF INERTIA AND WIND-OFF NATURAL 

FREQUENCIES OF CONTROL SYSTEMS 

Configuration 

t / c  = 0.04 wing, 
# = 13.33' control  

t / c  = 0.06 wing, 
# = 13.33O control  

t / c  = 0.08 wing, 
# = 13.33' control  

t / c  = 0.10 wing, 
# = 5.250 cont ro l  

t / c  = 0.10 wing, 
fl = 19.750 control  

t / c  = 0.06 wing, 
serrated-wedge control  

t / c  = 0.06 wing, 
Ml-wedge control 

t / c  = 0.06 wing, 
s p l i t t e r - p l a t e  control  

t / c  = 0.10 wing, 
t h i n  s p l i t t e r - p l a t e  control  

t / c  = 0.10 w i n g ,  
t h i ck  s p l i t t e r - p l a t e  control  

Ine r t i a ,  
weight 

None 
Small 
Large 
None 

Small 
Large 
None 

Small 
Large 
None 
Small 
Large 
None 

Small 
-ge 
None 

small 
Large 
None 

Small 
Large 

None 
Small 
Large 

None 
Small 
Large 
None 

Small 
L=-ge 

I, 
Slug-f t2  

0.99 x 10-5 
2.31 
6.53 

2.32 
6.55 

2.32 
6.55 

6.65 

6.57 
1.08 
2.39 
6.63 
1.16 

6.71 
1.13 

6 -67 

2.51 
6.75 
1-35  
2.66 
6.90 

1.00 

1.00 

1.10 
2.42 

1.02 
2.34 

2.47 

2.44 

1.20 

f0 7 

CPS 

288.0 
188.0 
111.0 
325 0 
218.0 
128.5 
283 - 5 

109.8 
263.0 
178.0 
107 5 
320.0 
211.0 
126.8 
333 0 
215.3 
128.5 
293 5 
202.0 
124 3 
299 5 
205.0 
125 9 5 
268.0 
182.0 
111.0 
238.0 
189.0 
106.0 

184.0 
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(a) t/c = 0.04. 

Figure 13.- Variation of static hinge-moment coefficient with control 
deflection for the model with fi = 13.33' control at various Mach 
numbers. 
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8F 

. 

$=O.lO wing, ts=0.013 

M M 

% -0.10 wing, rs=Q03/ 

6 7 .8 .9 LO 

M 

57 

(c) Splitter-plate-control models. 

Figure 17. - Continued. 
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Figure 20.- Variation of rolling-moment coefficient with control deflec- 
tion for the splitter-plate-control models at various Mach numbers. 
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Figure 21.- Variation of rolling-moment coefficient with control deflec- 
tion for the wedge-control models at various Mach numbers. 
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